A GALOIS-THEORETIC CHARACTERIZATION OF p-ADICALLY CLOSED FIELDS

BY

IDO EFRAT

The Institute of Mathematics, The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel
e-mail: efrat@math.huji.ac.il

ABSTRACT

Let p be an odd prime, K a field, and G_K its absolute Galois group. It is shown that K is p-adically closed if and only if G_K is isomorphic to an open subgroup of $G_{\mathbb{Q}_p}$. It is also shown that if $G_K \cong G_{\mathbb{F}_q(\{t\})}$, with $q = p^r$, then K has a non-trivial henselian valuation.

Introduction

A (Krull) valuation v on a field K is called p-adic if v(p) > 0 and O_v/pO_v is finite, with O_v denoting the valuation ring of v. One says that a p-adically valued field (K, v) is p-adically closed if char K = 0 and there is no proper algebraic extension $(K_1, v_1)/(K, v)$ of valued fields such that $O_{v_1}/pO_{v_1} \cong O_v/pO_v$. The motivating examples of such fields are the finite extensions of the field \mathbb{Q}_p of p-adic numbers.

The systematic study of p-adically valued fields that began in the mid-1960s revealed a beautiful analogy between their main arithmetic and model-theoretic features and those of the ordered fields, as described by Artin, Schreier and Tarski (see [PR, §1]). The Galois-theoretic aspects of the theory, however, turned out to be more difficult. It follows easily from the results of [PR] that the profinite groups occurring as the absolute Galois group $G_K = \operatorname{Gal}(\tilde{K}/K)$ of some p-adically closed field K (with \tilde{K} denoting the algebraic closure of K) are precisely the open subgroups of $G_{\mathbb{Q}_p}$ (Remark 4.4). We call such a group a p-adic group. An explicit presentation of the p-adic groups by means of profinite generators

274 I. EFRAT Isr. J. Math.

and relations was given for $p \neq 2$ by Jannsen and Wingberg [JW] (improving earlier results of Jakovlev and Koch). Diekert [Di] gave a similar presentation for the open subgroups of $G_{\mathbb{Q}_2(\sqrt{-1})}$ (and more generally for G_K where K is a finite extension of \mathbb{Q}_2 over which $\sqrt{-1}$ is tamely ramified).

Conversely, one came to the conjecture that if G_K is p-adic then K is p-adically closed. This stands in analogy with the classical result of Artin and Schreier [AS] which asserts that real closedness can be read off from the structure of G_K —namely, K is real closed if and only if $G_K \cong \mathbb{Z}/2\mathbb{Z}$. The first result in this direction was by Neukirch [N], who proved the conjecture for $K \subseteq \mathbb{Q}$. Pop [P1], in an ingenious combination of field-theoretic, geometric, and model-theoretic arguments, generalized Neukirch's result to fields K of characteristic 0 such that $\tilde{K} = K\mathbb{Q}$ (when char K > 0, G_K cannot be p-adic — see §4). In addition, he proved the conjecture for fields of transcendence degree 1 over a p-adically closed field, as well as for fields which are henselian with respect to a valuation having positive residue characteristic. See [HJ, Cor. 15.2] for another special case. In this paper we prove the conjecture in general, leaving open only the case p = 2:

THEOREM A: Let $p \neq 2$ and let K be a field with G_K p-adic. Then K is p-adically closed.

The method of the proof is quite general and can be used to prove henselianity of other fields as well using only Galois-theoretic data. For instance, we prove (see Theorem 4.5 for a more precise statement):

THEOREM B: Let q be an odd prime power and let K be a field with $G_K \cong G_{\mathbb{F}_q((t))}$. Then K is henselian with respect to a non-trivial valuation.

Our proofs are based on a powerful valuation-theoretic construction due to Arason, Elman and Jacob [AEJ] (generalizing earlier constructions of Jacob [J] and Ware [W1]). In the p-adic case it enables us to use Pop's results.

After an earlier version of this paper had been submitted to publication and distributed, I received from Jochen Koenigsmann the preprint [Ko] in which he proves a partial analog of the construction of [AEJ] for an odd prime p. By this he proves an important case of a conjecture of the author, stating that, in general, p-rigid elements (in the sense of [W2]) give rise to p-henselian valuations with non-trivial inertia groups (relative to the maximal pro-p extension of the field). Using this Koenigsmann gives an independent proof of Theorem A which covers also the case p = 2.

ACKNOWLEDGEMENT: I thank Moshe Jarden and Dan Haran for carefully reading the earlier version of this paper and for several remarks concerning its presentation.

1. Preliminaries on valuation theory

We recall a few (well-known) facts which will be used in the sequel (see e.g. [E] or [P2, §1] for more details and proofs). Let (L,u)/(K,v) be a Galois extension of valued fields with residue fields \bar{L}, \bar{K} and value groups Δ, Γ , respectively. Let V, T, Z be the ramification, inertia and decomposition groups of u/v, respectively. Then V, T are normal subgroups of Z and $V \leq T$. If $p = \operatorname{char} \bar{K} > 0$ then V is the unique p-Sylow subgroup of T. If $\operatorname{char} \bar{K} = 0$ then V = 1. There is a split short exact sequence

$$1 \rightarrow T/V \rightarrow Z/V \rightarrow \operatorname{Aut}(\bar{L}/\bar{K}) \rightarrow 1$$

(where the fixed field of the image of a section is a maximal purely ramified subextension of (L, u)/(K, v)). As $\operatorname{Aut}(\bar{L}/\bar{K})$ -modules, $T/V \cong \operatorname{Hom}(\Delta/\Gamma, \bar{L}^{\times})$. In particular, T/V is abelian.

Let Ω be a set of prime numbers \neq char K and assume that L is closed under extracting lth roots for all $l \in \Omega$. Then the l-primary component of Δ is $\lim_{\longrightarrow} \Gamma/l^r$. Let μ_{l^r} be the group of roots of unity over the prime field of \bar{K} of order dividing l^r . Then $\mu_{l^r} \subseteq \bar{L}$ for all r. Also let $\delta_l = \dim_{\mathbb{F}_l} \Gamma/l$. For $l \neq \operatorname{char} \bar{K}$ the (unique) l-Sylow subgroup of T/V is thus isomorphic as an $\operatorname{Aut}(\bar{L}/\bar{K})$ -module to

$$\operatorname{Hom}(\varinjlim \Gamma/l^r,\bar{L}^\times) \cong \varprojlim \operatorname{Hom}(\Gamma/l^r,\mu_{l^r}) \cong \left(\varprojlim \mu_{l^r}\right)^{\delta_l}.$$

We will need the following two special cases:

- (i) Ω is the set of all primes \neq char K and L is the separable closure of K. Then $T/V \cong \prod_{l \neq \text{char } \bar{K}} \left(\lim_{\longleftarrow} \mu_{l^r} \right)^{\delta_l}$ as $G_{\bar{K}}$ -modules.
- (ii) $\Omega = \{l\}, \ l \neq \operatorname{char} \bar{K}, \ K \text{ contains a primitive root of unity of order } l, \text{ and } L \text{ is the maximal pro-} l \text{ Galois extension of } K. \text{ By Kummer's theory, } L \text{ is also the closure of } K \text{ with respect to extracting } l \text{th roots. Then } V = 1 \text{ and } T \cong \left(\lim \mu_{l^r}\right)^{\delta_l} \text{ as } \operatorname{Aut}(\bar{L}/\bar{K})\text{-modules.}$

We denote the value group of a valuation ring O by $\Gamma(O)$.

276 I. EFRAT Isr. J. Math.

PROPOSITION 1.1: Let O be a henselian valuation ring on a field K with residue field \bar{K} and let p be a prime number. Suppose that:

- (a) there exists a prime number $l \neq \text{char } \bar{K}$ such that $\Gamma(O)/l \neq 0$;
- (b) every non-trivial normal closed subgroup of G_K has a non-abelian p-Sylow subgroup.

Then char $\bar{K} = p$.

Proof: Let T (resp., V) be the inertia (resp., ramification) group of (K, O) relative to the separable closure of K. As O is henselian, the corresponding decomposition group is G_K , so T is normal in G_K . From the discussion above and (a), the l-Sylow subgroup of T/V is non-trivial. Hence $T \neq 1$. By (b), T has a non-abelian p-Sylow subgroup. If char $\bar{K} \neq p$ then the p-Sylow subgroup of T/V is isomorphic to that of T, yet is abelian. It follows that char $\bar{K} = p$.

We conclude this section with three computational observations:

LEMMA 1.2: Let L/K be a finite extension of fields, let O be a valuation ring on L and let $n \in \mathbb{N}$. Then:

$$(\Gamma(O): n\Gamma(O)) = (\Gamma(O \cap K): n\Gamma(O \cap K)).$$

Proof: Identify $\Gamma = \Gamma(O \cap K)$ as a subgroup of $\hat{\Gamma} = \Gamma(O)$ in the natural way. Since $\hat{\Gamma}$ is torsion-free, $\hat{\Gamma}/\Gamma \cong n\hat{\Gamma}/n\Gamma$. Hence

$$(n\hat{\Gamma}: n\Gamma) = (\hat{\Gamma}: \Gamma) \le [L: K] < \infty.$$

Now use the fact that $(\hat{\Gamma}: n\hat{\Gamma})(n\hat{\Gamma}: n\Gamma) = (\hat{\Gamma}: \Gamma)(\Gamma: n\Gamma)$.

LEMMA 1.3: Let O be a valuation ring on a field K with residue field \bar{K} and with 1-units group $U^{(1)}$. Then for every $n \in \mathbb{N}$,

$$(\Gamma(O): n\Gamma(O)) \cdot (\bar{K}^{\times} \colon (\bar{K}^{\times})^n) \leq (K^{\times} \colon (K^{\times})^n).$$

When $(K^{\times}: (K^{\times})^n) < \infty$ this is an equality if and only if $U^{(1)} \subseteq (O^{\times})^n$.

Proof: The valuation map and the residue homomorphism induce (using the right-exactness of $\bullet \otimes \mathbb{Z}/n$) the exact sequences

$$1 \ \rightarrow \ O^\times/n \ \rightarrow \ K^\times/n \ \rightarrow \ \Gamma(O)/n \ \rightarrow \ 0, \quad U^{(1)}/n \ \rightarrow \ O^\times/n \ \rightarrow \ \bar{K}^\times/n \ \rightarrow \ 1,$$

respectively. The lemma follows.

Valuation rings O_1 , O_2 on a field K are called **comparable** if one of them contains the other.

LEMMA 1.4: Let O_1, \ldots, O_n be pairwise incomparable valuation rings on a field K with residue fields $\bar{K}_1, \ldots, \bar{K}_n$, respectively. Then for every $m \in \mathbb{N}$,

$$(K^{\times}: (K^{\times})^m) \ge \prod_{i=1}^n (\bar{K}_i^{\times}: (\bar{K}_i^{\times})^m).$$

Proof: Let $S = O_1^{\times} \cap \cdots \cap O_n^{\times}$. The approximation theorem for incomparable valuations [R, p. 143, Prop. 1] says that the residue map $S \to \prod_{i=1}^n \bar{K}_i^{\times}$ is surjective. Therefore so is the induced map $S/S^m \to \prod_{i=1}^n \bar{K}_i^{\times}/(\bar{K}_i^{\times})^m$. On the other hand, S/S^m embeds in $K^{\times}/(K^{\times})^m$, whence the required inequality.

2. A henselianity criterion

Let p be a prime number. We denote the maximal pro-p quotient of a profinite group G by G(p). The maximal pro-p Galois extension of a field K will be denoted by K(p). Thus $G_K(p) = \operatorname{Gal}(K(p)/K)$. Suppose now that $\operatorname{char} K \neq p$ and that K contains a primitive root of unity of order p. Consider the Galois cohomology exact sequence corresponding to the exact sequence

$$1 \to \mathbb{Z}/p \to K(p)^{\times} \xrightarrow{p} K(p)^{\times} \to 1$$

of $G_K(p)$ -modules. Together with Hilbert's Theorem 90 it gives the Kummer isomorphism

$$K^{\times}/(K^{\times})^p \cong H^1(G_K(p), \mathbb{Z}/p).$$

In particular, $\dim_{\mathbb{F}_p} K^{\times}/(K^{\times})^p = \operatorname{rank}(G_K(p))$ [S2, I-38].

PROPOSITION 2.1: Let p be a prime number and let (K,O) be a valued field with residue field \bar{K} of characteristic $\neq p$ such that $G_{\bar{K}}(p)$ is infinite. Suppose that

$$\sup_L \operatorname{rank}(G_L(p)) < \infty$$

with L ranging over all finite separable extensions of K. Then O is henselian.

Proof: First observe that for every finite extension L of K and for every extension of O to L, the residue field \bar{L} is a finite extension of \bar{K} , hence $G_{\bar{L}}(p)$ is infinite. We further recall that henselianity goes down in Galois extensions, provided that the upper residue field is not separably closed [Eg, Cor. 3.5]. After replacing K by an appropriate finite Galois extension, we may therefore assume that it contains a primitive root of unity of order p. For the same reasons, if

O is not henselian then we can construct inductively a sequence of finite Galois extensions

$$(K, O) = (K_1, O_1) \subseteq (K_2, O_2) \subseteq \cdots$$

such that for each i, O has at least i extensions to K_i .

Now take n sufficiently large, let $O^{(1)}, \ldots, O^{(n)}$ be distinct extensions of O to $L = K_n$, and let $\bar{L}_1, \ldots, \bar{L}_n$ be the corresponding residue fields. Note that char $\bar{L}_i = \operatorname{char} \bar{K} \neq p, \ i = 1, \ldots, n$. By [R, p. 158, Cor. 5], $O^{(1)}, \ldots, O^{(n)}$ are incomparable. Lemma 1.4 implies that

$$(L^{\times}:(L^{\times})^p) \ge \prod_{i=1}^n (\bar{L}_i^{\times}:(\bar{L}_i^{\times})^p).$$

Since K contains a primitive root of unity of order p, so do $L, \bar{L}_1, \ldots, \bar{L}_n$. Hence,

$$\begin{split} \dim_{\mathbb{F}_p} L^\times/(L^\times)^p &= \operatorname{rank}(G_L(p)), \\ \dim_{\mathbb{F}_p} \bar{L}_i^\times/(\bar{L}_i^\times)^p &= \operatorname{rank}(G_{\bar{L}_i}(p)) \geq 1, \quad i = 0, \dots, n. \end{split}$$

Consequently rank $(G_L(p)) \geq n$, contrary to the boundness assumption.

3. 2-rigidity

A non-zero element a of a field K is called 2-rigid if $(K^{\times})^2 + a(K^{\times})^2 \subseteq (K^{\times})^2 \cup a(K^{\times})^2$. We denote the set of all $a \in K^{\times}$ such that a or -a are not 2-rigid by B_K . Note that $(K^{\times})^2 \cup -(K^{\times})^2 \subseteq B_K$; indeed, $0 \in (K^{\times})^2 - (K^{\times})^2$ but $0 \notin (K^{\times})^2 \cup -(K^{\times})^2$, so the elements of $-(K^{\times})^2$ are never 2-rigid. For a profinite group G and for $i \geq 0$ let $H^i(G) = H^i(G, \mathbb{Z}/2)$. Let B_G be the set of all $\varphi \in H^1(G)$ such that the cup product $\varphi \cup \psi = 0$ in $H^2(G)$ for some $\psi \neq 0, \varphi$.

- 3.1 Remarks: Let K be a field of characteristic $\neq 2$ such that $|K| \geq 7$ and let $G = G_K(2)$. For $a \in K^{\times}$ let $(a)_K$ be the element of $H^1(G)$ corresponding to the coset $a(K^{\times})^2$ of $K^{\times}/(K^{\times})^2$ under the Kummer isomorphism (§2).
- (a) We have $K = (K^{\times})^2 (K^{\times})^2$. Indeed, let $a \in K$. Since $|(K^{\times})^2| \ge 3$ we can take $b \in K^{\times}$ such that $b^2 \ne \pm a$ to obtain:

$$a = \left(\frac{a+b^2}{2b}\right)^2 - \left(\frac{a-b^2}{2b}\right)^2 \in (K^{\times})^2 - (K^{\times})^2.$$

(b) Given $a, b \in K^{\times}$ we have $a \in (K^{\times})^2 + b(K^{\times})^2$ if and only if $1 \in a(K^{\times})^2 - b(K^{\times})^2$ and this is equivalent to $1 \in aK^2 - bK^2$ (use (a)). By [L, Ch. I, Prop.

5.1], the latter condition means that the quadratic forms $\langle a, -b \rangle$ and $\langle 1, -ab \rangle$ are K-isometric. Equivalently, $(a)_K \cup (-b)_K = 0$ in $H^2(G)$ [D].* Since $1 \in aK^2 - aK^2$ (by (a) again), we have in particular $(a)_K \cup (-a)_K = 0$ (the latter equality also holds for the exceptional fields \mathbb{F}_3 , \mathbb{F}_5 since then $G \cong \mathbb{Z}_2$, whence $H^2(G) = 0$ [S2, I-37, Cor. 2]).

(c) Suppose that $-1 \in K^2$. By (b), $B_K/(K^{\times})^2$ is mapped bijectively onto B_G via the Kummer isomorphism.

Denote the multiplicative subgroup of K^{\times} generated by B_K by $\langle B_K \rangle$. The following fundamental result is proved in [AEJ, Th. 3.8, Th. 3.9 and Lemma 4.4], taking there $T = (K^{\times})^2$ (for (c) use also the remarks above; the same result but without part (c) was proved earlier by Ware in [W1, Th. 4.4]).

Theorem 3.2 (Arason, Elman, Jacob, Ware): Every field K has a valuation ring O_K such that:

- (a) The 1-units of O_K are contained in $(O_K^{\times})^2$.
- (b) $\langle B_K \rangle$ is a subgroup of $O_K^{\times}(K^{\times})^2$ of index ≤ 2 .
- (c) If $\operatorname{rank}(G_K(2)) \geq 2$ and $\operatorname{char} K \neq 2$ then the residue characteristic of O_K is $\neq 2$.

Remark 3.3: (a) By a result of Berman ([B]; [M, Th. 5.8]), B_K is actually always a multiplicative group, but we shall not need this fact here.

(b) An analogous notion of a p-rigid element for an odd prime number p was given by Ware in [W2].

4. The main results

We now restrict ourselves to Galois groups of (non-archimedian) local fields, i.e., fields F which are complete with respect to a discrete valuation v with finite residue field \mathbb{F}_q , $q=p^n$, $n\in\mathbb{N}$. Suppose $p\neq 2$. Taking σ to be a lifting to $G_F(2)$ of the Frobenius generator of $G_{\mathbb{F}_q}(2)$, one gets from the considerations of §1 the Hasse–Iwasawa presentation

$$G_F(2) \cong \langle \sigma, \tau | \tau^{\sigma} = \tau^q \rangle_{\text{pro}-2}.$$

First we need the following group-theoretic observation:

^{*} Delzant actually considers in [D] the cohomology groups $H^i(G_K)$, but his arguments hold literally also for $H^i(G)$.

LEMMA 4.1: Let l be a prime number, let $\lambda \in \mathbb{Z}_l^{\times}$ be a non-torsion element, and let $G = \langle \sigma, \tau \mid \tau^{\sigma} = \tau^{\lambda} \rangle_{\text{pro}-l}$. Then $\mathbb{Z}_l \times \mathbb{Z}_l$ is not a closed subgroup of G.

Proof: Let $\pi: G \to G/\langle \tau \rangle$ be the natural epimorphism and suppose that $\mathbb{Z}_l \times \mathbb{Z}_l \cong A \leq G$. Since $\pi(G) \cong \mathbb{Z}_l$, necessarily $A \cap \operatorname{Ker}(\pi) \neq 1$, i.e., $\tau^n \in A$ for some positive integer n. Also, $A \not\leq \langle \tau \rangle = \operatorname{Ker}(\pi)$, so there exists a positive integer m such that $\pi(\sigma^m) \in \pi(A)$. Thus $\sigma^m \in \tau^{\mu}A$ for some $\mu \in \mathbb{Z}_l$. Taking commutators we get:

$$[\tau^n, \sigma^{-m}\tau^{\mu}] = [\tau^n, \sigma^{-m}]^{\tau^{\mu}} = (\tau^{n(\lambda^m - 1)})^{\tau^{\mu}} \neq 1,$$

since $n(\lambda^m - 1) \neq 0$ in \mathbb{Z}_l . This contradicts the abelianity of A.

LEMMA 4.2: Let K be a field and suppose that

$$G_K(2) \cong \langle \sigma, \tau | \tau^{\sigma} = \tau^{\lambda} \rangle_{\mathsf{pro}-2}$$

with $\pm 1 \neq \lambda \in \mathbb{Z}_2^{\times}$. Let O_K be as in Theorem 3.2 and let \bar{K} be its residue field. Then:

- (a) char $K \neq 2$;
- (b) char $\bar{K} \neq 2$.

If $-1 \in K^2$ then in addition:

- (c) $B_K = (K^{\times})^2$;
- (d) $(\Gamma(O_K): 2\Gamma(O_K)) = 2;$
- (e) $G_{\bar{K}}(2) \cong \mathbb{Z}_2$.

Proof: Set $G = G_K(2)$.

- (a) Apply [S2, II-5, Cor. 1].
- (b) Use (a) and Theorem 3.2(c).
- (c) We have $\dim_{\mathbb{F}_2} H^1(G) = \operatorname{rank}(G) = 2$ [S2, I-38]. [K, Satz 7.23] yields an \mathbb{F}_2 -linear basis φ_1, φ_2 of $H^1(G)$ such that $\varphi_1 \cup \varphi_2 \neq 0$. As $-1 \in (K^{\times})^2$ and by Remark 3.1(b), $(a)_K \cup (a)_K = (a)_K \cup (-a)_K = 0$ for every $a \in K^{\times}$, so $\varphi_1 \cup \varphi_1 = \varphi_2 \cup \varphi_2 = 0$. It is now straightforward to check that $B_G = 0$, so we are done by Remark 3.1(c) (note that K is infinite because of the structure of G).
- (d) By the remarks in §2, $(K^{\times}: (K^{\times})^2) = 4$. Therefore (c) and Theorem 3.2(b) give $(K^{\times}: O_K^{\times}(K^{\times})^2) \geq 2$. The natural isomorphism $\Gamma(O_K)/2 \cong K^{\times}/O_K^{\times}(K^{\times})^2$ hence implies that $(\Gamma(O_K): 2\Gamma(O_K)) \geq 2$. Conversely, extend O_K to a valuation ring $O_K(2)$ on K(2) and let V, T be the ramification and inertia group, respectively, of $O_K(2)/O_K$. As char $\bar{K} \neq 2$ we have V = 1, and therefore $T \cong \mathbb{Z}_2^{\delta_2}$,

where $\delta_2 = \dim_{\mathbb{F}_2} \Gamma(O_K)/2$ (see §1). Since the only roots of unity in \mathbb{Z}_2 are ± 1 , Lemma 4.1 gives $\mathbb{Z}_2 \times \mathbb{Z}_2 \not\leq G$. Conclude that $\delta_2 \leq 1$, as required.

(e) By Theorem 3.2(a) and Lemma 1.3,

$$(\Gamma(O_K): 2\Gamma(O_K)) \cdot (\bar{K}^{\times}: (\bar{K}^{\times})^2) = (K^{\times}: (K^{\times})^2) = 4.$$

Conclude from (d) that $(\bar{K}^{\times}:(\bar{K}^{\times})^2)=2$, i.e., $\operatorname{rank}(G_{\bar{K}}(2))=1$. By (b) again and the remarks in §1, $G_{\bar{K}}(2)$ embeds in $G_{\bar{K}}(2)$. Since the latter group is a semi-direct product of \mathbb{Z}_2 with itself, it is torsion-free. Hence so is $G_{\bar{K}}(2)$, and we obtain $G_{\bar{K}}(2)\cong\mathbb{Z}_2$.

COROLLARY 4.3: Let K be a field and suppose that for every finite separable extension L of K,

$$G_L(2) \cong \langle \sigma, \tau | \tau^{\sigma} = \tau^{\lambda_L} \rangle_{\text{pro}-2}$$

for some $\pm 1 \neq \lambda_L \in \mathbb{Z}_2^{\times}$. Then K has a henselian valuation ring O with residue field \bar{K} satisfying char $\bar{K} \neq 2$, $(\Gamma(O): 2\Gamma(O)) = 2$ and $G_{\bar{K}}(2) \cong \mathbb{Z}_2$.

Proof: By Lemma 4.2(a), char $K \neq 2$. Let $K_1 = K(\sqrt{-1})$ and let \bar{K}_1 be the residue field of O_{K_1} from Theorem 3.2. By Lemma 4.2(b), char $\bar{K}_1 \neq 2$. We prove the corollary with $O = O_{K_1} \cap K$. For \bar{K} as above, char $\bar{K} \neq 2$. By Lemma 1.2 and Lemma 4.2(d),

$$(\Gamma(O): 2\Gamma(O)) = (\Gamma(O_{K_1}): 2\Gamma(O_{K_1})) = 2.$$

By Lemma 4.2(e), $G_{\bar{K}_1}(2) \cong \mathbb{Z}_2$, so $G_{\bar{K}}(2)$ is infinite. Proposition 2.1 therefore shows that O is henselian. As $(K^{\times}: (K^{\times})^2) = 4$, we conclude from Lemma 1.3 that $(\bar{K}^{\times}: (\bar{K}^{\times})^2) \leq 2$, so $\operatorname{rank}(G_{\bar{K}}(2)) \leq 1$. It follows that $G_{\bar{K}}(2) \cong \mathbb{Z}_2$.

Proof of Theorem A: Let K be a field with G_K p-adic and $p \neq 2$. By a theorem of Tate [S2, II-15, Prop. 12], $\operatorname{cd}_l(G_K) = 2$ for every prime number l. Since the absolute Galois group of a field of characteristic l > 0 has lth cohomological dimension ≤ 1 [S2, II-4, Prop. 3], $\operatorname{char} K = 0$.

By Corollary 4.3 and the Hasse–Iwasawa presentation, K is endowed with a henselian valuation O with residue field \bar{K} such that $(\Gamma(O):2\Gamma(O))=2$ and char $\bar{K}\neq 2$. By [P1, Kor. 1.5(1)], every non-trivial normal closed subgroup of a p-adic group has a closed subgroup which is a free pro-p group of countable rank. Proposition 1.1 (with l=2) implies that char $\bar{K}=p$. It follows from [P1, E9] that K is p-adically closed.

282 I. EFRAT Isr. J. Math.

Remark 4.4: As remarked in the introduction, the converse of the main theorem holds for all prime numbers p. This follows from the next two observations:

- (i) If K is p-adically closed with respect to a valuation v, then $K_0 = K \cap \tilde{\mathbb{Q}}$ is p-adically closed with respect to $\operatorname{Res}_{K_0} v$ [PR, Th. 3.4] and $\operatorname{Res}_{\tilde{\mathbb{Q}}} : G_K \to G_{K_0}$ is an isomorphism [P1, E4].
- (ii) If $K_0 \subseteq \mathbb{Q}$ is p-adically closed then its valuation is discrete and its completion \hat{K} is thus an immediate extension of K_0 . Being a complete discretely valued field of characteristic 0 with finite residue field of characteristic p, \hat{K} is a finite extension of \mathbb{Q}_p , hence is p-adically closed. Since K_0 is henselian [PR, Th. 3.1] and the valuation is discrete, we get from the fundamental equality of valuation theory [E, Cor. 18.7] that $K_0 = \hat{K} \cap \mathbb{Q}$.

From Corollary 4.3 and the Hasse–Iwasawa presentation we further obtain the following sharper form of Theorem B:

THEOREM 4.5: Let q be an odd prime power and let K be a field with $G_K \cong G_{\mathbb{F}_q((t))}$. Then K is endowed with a henselian valuation O whose value group Γ and residue field \bar{K} satisfy $(\Gamma: 2\Gamma) = 2$, char $\bar{K} \neq 2$ and $G_{\bar{K}}(2) \cong \mathbb{Z}_2$.

PROBLEM 4.6: Characterize the fields K for which $G_K \cong G_{\mathbb{F}_q((t))}$ for a given prime power q.

We remark that in general a field K with $G_K \cong G_{\mathbb{F}_q((t))}$, where $q = p^r$, need not have characteristic p. In fact we have:

PROPOSITION 4.7: For every field K there exists a field L of characteristic 0 such that $G_K \cong G_L$.

Proof: We may assume that $\operatorname{char} K > 0$. Since K and its inseparable closure have isomorphic absolute Galois groups, we may also assume that K is perfect. Let E be the quotient field of the ring of Witt vectors over K [S1, Th. II.3]. Then $\operatorname{char} E = 0$ and E is complete with respect to a discrete valuation v with residue field K. Denote the inertia and ramification groups of v relative to \tilde{E} by T and V respectively (the decomposition group is G_E since v is necessarily henselian). By the discussion in §1, G_K embeds in G_E/V . Furthermore, by [KPR, Th. 2.2], G_E/V embeds in G_E . It follows that some algebraic extension L of E satisfies $G_K \cong G_L$.

References

- [AEJ] J.K. Arason, R. Elman and B. Jacob, Rigid elements, valuations, and realization of Witt rings, Journal of Algebra 110 (1987), 449-467.
- [AS] E. Artin and O. Schreier, Algebraische Konstruktion reeller K\u00f6rper, Abhandlungen aus dem Mathematischen Seminar der Universit\u00e4t Hamburg 5 (1927), 85-99.
- [B] L. Berman, The Kaplansky radical and values of binary quadratic forms over fields, Ph.D thesis, University of California, Berkeley, 1978.
- [D] M. A. Delzant, Définition des classes de Stiefel-Whitney d'un module quadratique sur un corps de charactéristique différente de 2, Comptes Rendus de l'Academie des Sciences, Paris, Sér. A-B 255 (1962), 1366-1368.
- [Di] V. Diekert, Über die absolute Galoisgruppe dyadischer Zahlkörper, Journal für die reine und angewandte Mathematik 350 (1984), 152–172.
- [E] O. Endler, Valuation Theory, Springer, Berlin, 1972.
- [Eg] A. Engler, Fields with two incomparable Henselian valuation rings, manuscripta mathematica 23 (1978), 373–385.
- [HJ] D. Haran and M. Jarden, The absolute Galois group of a pseudo p-adically closed field, Journal für die reine und angewandte Mathematik **383** (1988), 147–206.
- [J] B. Jacob, On the structure of pythagorean fields, Journal of Algebra 68 (1981), 247-267.
- [JW] U. Jannsen and K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Inventiones mathematicae 70 (1982), 71–98.
- [K] H. Koch, Galoissche Theorie der p-Erweiterungen, VEB, Berlin, 1970.
- [Ko] J. Koenigsmann, From p-rigid elements to valuations (with a Galois-characterisation of p-adic fields), preprint.
- [KPR] F.-V. Kuhlmann, M. Pank and P. Roquette, Immediate and purely wild extensions of valued fields, manuscripta mathematica 55 (1986), 39-67.
- [L] T. Y. Lam, The Algebraic Theory of Quadratic Forms, W. A. Benjamin, Reading, Massachusetts, 1973.
- [M] M. Marshall, Abstract Witt Rings, Queen's Papers in Pure and Applied Mathematics, Vol. 57, Queen's University, Kingston, 1980.
- [N] J. Neukirch, Kennzeichnung der p-adischen und endlichen algebraischen Zahlkörper, Inventiones mathematicae 6 (1969), 269-314.

- [P1] F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, Journal für die reine und angewandte Mathematik **392** (1988), 145–175.
- [P2] F. Pop, On Grothendieck's conjecture of birational anabelian geometry, Annals of Mathematical Logic 139 (1994), 145-182.
- [PR] A. Prestel and P. Roquette, Formally p-adic fields, Lecture Notes in Mathematics 1050, Springer, Berlin, 1984.
- [R] P. Ribenboim, Théorie des Valuations, l'Université de Montréal, Montréal, 1968.
- [S1] J.-P. Serre, Local Fields, Springer, Berlin, 1979.
- [S2] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer, Berlin, 1965.
- [W1] R. Ware, Valuation rings and rigid elements in fields, Canadian Journal of Mathematics 33 (1981), 1338-1355.
- [W2] R. Ware, Galois groups of maximal p-extensions, Transactions of the American Mathematical Society 333 (1992), 721-728.